Partial differential equations with differential constraints
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Optimal control of partial differential equations with affine control constraints
Numerical solution of PDE optimal control problems involving affine pointwise control constraints is investigated. Optimality conditions are derived and a semi-smooth Newton method is presented. Global and local superlinear convergence of the method are obtained for linear problems. Differently from box constraints, in the case of general affine constraints a proper weighting of the control cos...
متن کاملOptimization with Partial Differential Equations
We present a model hierarchy multilevel optimisation approach to solve an optimal boundary control problem in glass manufacturing. The process is modelled by radiative heat transfer and formulated as an optimal control problem restricted by partial differential algebraic equations (PDAE) and additional control constraints. We consider a sequence of model approximations given by space-time depen...
متن کاملOptimization with Partial Differential Equations
In the rst part of this article, we have shown how time-dependent optimal control for partial di erential equations can be realized in a modern high-level modeling and simulation package. In this second part we extend our approach to (state) constrained problems. Pure state constraints in a function space setting lead to non-regular Lagrange multipliers (if they exist), i.e. the Lagrange multip...
متن کاملOptimization with Partial Differential Equations
In this article a boundary feedback stabilization approach for incompressible Navier-Stokes flow is studied. One of the main difficulties encountered is the fact that after space discretization by a mixed finite element method (because of the solenoidal condition) we end up with a differential-algebraic system (DAE) of index 2. The remedy here is to use a discrete realization of the Leray proje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2006
ISSN: 0022-0396
DOI: 10.1016/j.jde.2005.03.003